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ABSTRACT 

We discuss the cosmological abundance of magnetic 

monopoles in locally supersymmetric GUTS and primordial 

inflation. Depending on the temperature scale of the GUT 

phase transition (A 
5 in this model) monopoles may or may not 

be suppressed sufficiently to satisfy cosmological and 

astrophysical limits. For example, if the GUT transition 

occurs after inflation (A 5 < TH - 0 (IO” - 10” Cell), where 

TH is the temperature at which inflation occurs) too many 

monopoles will be produced unless A5<10 9 GeV. Even then, 

al though the cosmological density limits are satisfied, 

neutron star limits on the monopole abundance may rule this 

situation out. If on the other hand A5>TH, SU(5) breaking 

may occur during inflation and hence the monopole abundance 

is greatly suppressed as it was in non-primordial inflation: 

We show that both scenarios are possible with the latter 

(A5>TH) being preferred for monopole suppression. 
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Phase transitions in grand unified theories (GUTS) have 

drastically changed the scenario for the very early Universe 

by providing mechanisms for baryon generation 1) and 

inflation2) with all its benefits. However, many of these 

phase transitions also produce magnetic monopoles3), and 

their history has been the cause of a number of worries to 

cosmologists. One of the benefits of new inflation4’*) was 

to solve the magnetic monopole problem 6) . However, as models 

of inflation have become more complicated the GUT transition 

and the inflation transition have become separate phenomena 

in many models7). As a result the magnetic monopole problem 

has reappeared. In this paper we discuss how the magnetic 

monopole problem may be solved (or not solved) in variants 

of broken El= 1 supergravity primordial inflation8*‘). We 

begin by reviewing the monopole problem and its solution in 

infla t ionary models. We then discuss difficulties with a 

recen t suggestion by Linde”) to solve the problem in 

primordial inflation. Finally we suggest some modifications 

to Linde’s arguments that may be more successful. 

The monopole problem 5) arises whenever a simple group 

breaks to one containing an explicit U(1) factor 3 , such as 

SU(5)+SU(3) x SU(2) x U(1). In general, it is difficult to 

calculate the precise number of monopoles produced by a GUT 

transition. However, for a first order transition one can 

estimate that there should be roughly one monopole per 

bubble of the new phase. It has been shown6) that if the GUT 



transition takes place at Tc - ~0’~ CeV , the number of 

monopoles will greatly exceed their cosmologically 

acceptable abundance. 

There have been a number of approaches to calculating 

the monopole abundance 6,11,12) but here we will outline only 

the simplest (however naive) approach to the problem. In an 

adiabatically expanding Friedmann-Robertson-Walker Universe, 

the expansion timescale can be related to the temperature by 

t = (90132 v3 gT)“’ Mp/T2 (1) 

where M 
P = 1.2 x 10 lg GeV is the planck mass and gT is the 

total number of relativistic degrees of freedom at the 

temperature T. Monopoles are produced during a GUT phase 

transition due to a lack of correlation among the Higgs 

fields driving the transition3). These scalars could be 

correlated over distances of at most the horizon scale, 2t. 

If we then assume that at least one monopole is produced per 

horizon volume at temperature Tc then the number density of 

monopoles is 

“m - (2t)-3 - 4 x lo3 Tc%-lp3 (2) 

when compared to the number of photons present at Tc 

“Y - (gT/4)Tc3 (3) 



the monopole to photon ratio is 

r I rim/n Y - 10 4 (Tc/Mp)3/gT (4) 

This is actually an underestimate 6,11,12) , because the Higgs 

correlation length is probably much smaller than the 

horizon. A more realistic estimate using one monopole per 

bubble in a first order transition might be 13) 

r - lo6 (Tc/~p)3 . (5) 

Even if a large number of monopoles are produced their 

number will be reduced by monopole-antimonopole annihilation 

r - (l/gT”2)a 3 
5 

m/M 
P 

= ,o-‘o (6) 

where CI 5 is the SU(5) fine structure constant and m-10 l6 cev 

is the mass of the monopole. In some non-standard 

scenarios14) the ratio, r, could be further reduced. 

To see that there is a problem, one must compare the 

predicted abundance with the allowed cosmological and 

astrophysical bounds. The surest limit comes from the 

overall mass density of the Universe 6) . The energy density 

stored in monopoles of mass m (in GeV) and density nm is 

constrained by 



'rn = m n,<Rp, (7) 

where R is the ratio of the total mass density to the 

Critical density pc = 1.88 x 10~~’ h 2 0 g cmA3, ho = (Ho/100 

km M -’ 
PC 

s-’ ) and H 0 iS the present value of the Hubble 

parameter. The most conservative bounds on the mass density 

and the bubble parameter require qh 34, however consistency 

with the age of the Universe requires a tighter limit on 

nho2 _< l/4 (see ref. 15). The monopole to photon ratio is 

then constrained by 

r : 10 -a/m (8) 

comparing this result with (6) one has a monopole problem. 

There are other limits on the monopole abundance which 

are comparable 16) and stronger 17). However, these limits are 

more model dependent and we only quote their results. Limits 

coming from the survival of galactic magnetic fields16) can 

be expressed as 

r _< 113~~~ mg (9a) 

where 6 is the monopole velocity (typically 6-10a3). on m 

and f? this limit is comparable to the cosmological limit 

(8). A much stronger limit comes with the inclusion of 

baryon number violating interactions around a monopole 18). 
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Limits coming from neutron stars 17) are roughly 

r _< 10 -2g B/a* (9b) 

where o. is the magnitude of the baryon number violating 

cross-section normalized to a typical strong cross-section 

(0 - 4 x 10-28 cm2). If taken seriously, both limits Put 

strong constraints on the primordial abundance of monopoles. 

A possible solution to the monopole problem 6) lies in 

the inflationary Universe scenario5). The general idea is 

that bubbles of the broken symmetric phase get expanded by 

the inflation. After the phase transition the Higgs 

coherence length is then much longer than the horizon size. 

For example, the “new” inflationary scenario 4,5) offers the 

possibility that there is only a single monopole inside the 

visible portion of the Universe. This is because in these 

models the whole Universe originates from a single bubble 

during the GUT phase transition. Unfortunately, these models 

cannot produce the perturbation spectrum necessary to 

explain the large scale structure of the Universe ‘9) . 

A class of supersymmetric models known as primordial 

inflation7~g’g) offers the possibility of explaining the 

large scale structure of the Universe as well as having the 

benefits of inflation. We now wish to discuss the monopole 

problem in the context of primordial inflation. In these 

models, inflation is no longer associated with the breakdown 



of SU( 

involv 

it i3 

which 

a 

5), but rather, it is due to a phase transition 

ing an SU(5) singlet, the inflaton, $. In such models, 

possible to write down a single superpotential, f, 

will describe all scalar interaction3 and the 

evolution of the Universe from the planck time till the 

present. However, because inflation has been separated from 

SUt5) breaking, one must take special care that the number 

of monopoles produced during the SU(5) transition still 

satisfies the cosmological and astrophysical limits. For 

example, in the mode13a'g) utilizing N=l supergravity, 

inflation occur3 at T H - 10" GeV, where TH = H/21r and H is 

the Hubble parameter. The model can be arranged 30 that 

SU(5) is broken at T - log Cell and, hence, after inflation 

has occured. In this case, the number of monopoles will not 

be inflated away. Although r - lo6 (Tc/M)3 - 1O-25 might 

satisfy the cosmological density limit (a), it does not come 

close to the neutron star limit (9b). Hence there may still 

be a monopole problem. To illustrate these remarks we would 

like to work with the following mode1a'g820). The 

superpotential is divided into three main part3 

f=fI+f +f 
5 B 

where f I solely account3 for inflation a) 

(10) 

fI = rnI 3 cnIo (A,/(n+l)) ($/M)"+' + A'] (11) 
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where $ is the inflaton and m I is an overall scale for the 

superpotential and M = Mn/JSn. To get sufficient inflation, 

couplings Ai are all O(10 -3)-O(l) with mI - O(10-2)M. The f5 

part accounts for the breaking of SU(512') and local 

supersymmetry 211 

f5=(a,/M)X4+(a2/M2)X2Tr(X3)+h(z) (12) 

where Z is the adjoint, X and z are SU(5) singlets and the 

coupling3 ai - O(1). The function h(z) is normally taken to 

be 

(13) 

and is the hidden sector used to break local supersymmetry. 

This simple form for h is known 22) to have problems. After 

inflation the z field is not exactly at its global minimum 

and it is difficult to dissipate the energy stored in the z 

field. More complicated forms for h may23) resolve this 

problem. Finally, fg is used to account for baryon 

generationg'20). The detail3 of fg are not relevant for this 

discussion. 

To analyze the behavior of the model, one must write 

down the scalar potential in terms of f. For N-l 

supergravityz4), the minimal expression is 
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(14) 

where 

f 
'i 

= af/ayi + y*f,M2 (15) 

for each chiral supermultiplet yi. In this model (Eqns. 

10-12) one can separate out, to a large extent, the inflaton 

self-interactions from the rest of V. One then has a scalar 

potential V(e,$*) in term3 of the hi which will be required 

to meet the conditions of sufficient inflation 7). The goal 

is to have a potential with a barrier near the origin while 

still being very flat to allow a long roll over time scale 

to a local minimum at <$>-M. Recently it has been pointed 

out25.5) that the effects of finite temperature a) render 

this scheme inconsistent by proving the existence of a local 

minimum at some @o < f-4 with v(@o)<o. Thus the inflaton would 

produce a negative 25) cosmological constant. However, the 

finite temperature correction3 used were computed neglecting 

the effect3 of other chiral supermultiplets in the model. It 

turns out that these are dominant and a suitable change of 

signs of the Coupling3 Xi (among other possible variations) 

will negate the existence of the troublesome minimum. It 

should also be noted that trying to use this minimum a3 a 

broken supersymmetric minimum with zero cosmological 

constant as in Ref. 25 would be disastrous. SUperSymmetry 
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would then be broken at a scale M 
s - 10'~ Cell producing a 

gravitino of ma33 
m3/2 

- 1013 GeV and thus destroying the 

gauge hierarchy and one of the original motivations for 

supersymmetry. 

Using the procedure of eqs. 14 and 15, we can write 

down the scalar potential for X and Z. Before looking at 

this, it is important to realize that the breaking of SU(5) 

in supersymmetric theories is complicated by the existence 

of several degenerate vacua26). At zero temperature in 

globally supersymmetric models there are at least three 

degenerate minima, SU(5), SU(3) x SU(2) x U(1) and SU(4) x 

U(1). At finite temperature, the degeneracy is broken by the 

differing number of particle degrees of freedom in each 

phase, with SU(5) being the lowest minimum. This presents a 

problem as to how one ever get3 out of SU(5). To accomplish 

this it has been observed26*27) that when the temperature 

drop3 below A 5 (defined to be the scale at which the GUT 

fine structure constant, 
a5’ 

becomes O(1)) the above picture 

breaks down. At T - A 5 strong coupling phenomena decreases 

the effective number of degrees of freedom in the SU(5) 

phase. This effect may push the SU(5) minimum above the 

others. The tunnelling rate out of SU(5) will be vanishingly 

small unless the barrier separating these phases is kept 

sma112'). This can be done by either introducing a small 

coupling 27) A _ 1o-14 or by looking at N-l supergravity 26) 

with couplings of order unity. 
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In the superpotential (10). f5 (12) Will accomplish the 

above without small couplings. The scalar potential for (14) 

can be simplified to 

V/M4 = lx3+xo3/2 + 1x20212 

+ E (x4+Xo3+h.c.) + s~(/x~~+~o/*) (16) 

where x = X/M; L, = E/M and E = (LI/M)~~~O-‘~ for a 

Supersymmetry breaking scale p - 10” GeV. In the analysis 

of this potential (16). it was found “I that the global 

minimum iS an SU(3) x SU(2) x U(l) symmetric minimum with 

<E> = c”~M = (,,M)“2 - 1,-,15 GeV (17a) 

and 

<X> = c3’aM = 1o-6M (17b) 

and hence also predicts the GUT scale from the planck scale 

and the supersymmetry breaking scale II. (The weak scale is 

governed by the gravitino mass scale which is EM - p2/M - 

102 GeV 1. Furthermore, the barrier height is only E 5/2M4 _ 

(106 GeVJ4, without small couplings. It is possible, 

therefore, that if n5>1 o8 GeV, strong coupling phenomena 

will be able to drive the transition. 
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In the past, we have discussed values of h5 - O(109 

GeV) . The goal was to push “5 (and hence Tc) as low as 

possible to produce few monopoles. For example, with this 

value of h5, we might expect a monopole abundance r - 

o(lo-“6 ). This is sufficient for the cosmological (8) and 

galactic magnetic field (9a) limits, but falls six orders of 

magnitude short of the neutron star limits (9b). In fact, to 

make r consistent with (9b) one would need T - A5 - 107 c 

GeV. However, this value could no longer drive a phase 

transition over a barrier of lo 8 GeV and would also begin to 

make baryon generation very difficult. 

Before proceeding, we note that in this scenario the 

breaking of SU(5) occurs after the exponentially expanding 

phase. Although <e> = M, the hubble parameter at the time of 

inflation is 

H2 = 113 “I 6 k 2 - 5 x lo-l4 M* I 0 (18) 

H- 5 x 10” GeV 

i.e., before 

(5) will break 

> A5) and as a 

dilute away 

exponentially. We believe that although the general idea is 

Thus inflation takes place at TH - 1011 GeV 

the breaking of SU(5) at Tc - A5. 

Recently Linde 10) has argued that SU 

during primordial inflation (even if TH 

result the monopole abundance will 
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a good one the mechanism is not correct. Linde’ s argument 

depends on scalar field fluctuations in desitter space 29). 

Define the total mass2 

D-M 2 
0 

+ cT2 + 12a2<E2> (19) 

where M 
0 

2 is a bare mass and cT2 is the Z2 coefficient of 

the temperature correction to the effective potential 

VT = ~~10 a2v/azar* (20) 

and A is the E 4 coupling. In the limit D<<H*, one finds that 

the fluctuations in the adjoint scalar field are 2g) 

<E2> - H4/D (21) 

which must then be solved self consistently. Linde argues 

that D is small, so that <12> is large enough to populate 

the different symmetry breaking minima. The probability of 

finding our universe to be in the 3-2-I phase is then a 

fraction of O(1). 

We believe that D is not small. In (19) the A2<E2> term 

is negligible compared to the other terms because A is so 

small in the effective potential derived from (12). (The I’ 

term is in fact negligible to the terms included in (16) and 

for that reason left out.) The MO2 term is also very small 
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with a value given by 

MO2 - p4/M2 - (100 GeV)2 (22) 

The temperature correction term comes from two sources, The 

first term arises from the F term in the potential. It is 

small because it is proportional to A. However, there is a 

second contribution coming from the D-term and it is 

Proportional to a5. Therefore, the fluctuations are of order 

<E2> - H4/a5 TH2 - 4n2H2/cc 
5 (23) 

These are not large enough to drive the transition. 

The solution to the monopole problem can still be 

realized if we can raise the Value of A5 and hence T, to a 

value ? TH. In fact, by modifying the Higgs sector and by 

choosing slightly different initial parameters one can find 

a value A 
5 

- 10’~ GeV. With this value of 
A5' 

the SU(5) 

transition will take place during the epoch of primordial 

inflation 7-1o) and the monopoles are inflated away. The 

transition may take place in two ways; first, as previously 

described2’), via strongly coupling effects. In that case 

strong coupling effects are of order A 4 
5 

near the origin. 

We3’) warn the reader that the potential (16) is now altered 

by the fact that $ is not at its global minimum. The effect 

is to raise the barrier from E 5’2M4 to (fI(G)/M3)5’2 M’I. In 



this model f1(0) - m13A and must hence be constrained so 

that 

(fI(0)/M3)5’8 < A5/M. (24) 

(Note that the barrier is not affected by the D-term finite 

temperature correction, as the barrier is at E >> TH or A 
5' 

The correction is cut off by e-“T.) Another possibility is 

present for the SU(5) transition in the case of primordial 

inflation. Suppose strong coupling phenomena do not drive 

the transition, but instead Z finds itself in a new minimum 

near the origin. Depending on the parameters, if the 

tunnelling rate through this barrier (the tunnelling rate is 

still very low) is greater than the rate for forming a 

bubble due to the inflation transition, one could simply 

wait inside an SU(3) x SU(2) x U(1) bubble for inflation to 

occur. So long as the probability of tunnelling to the 3-2-l 

phase is comparable to the 4-l phase one does not have to 

worry about which one is closest 31). 

To summarize, we have seen that contrary to past fears, 

primordial inflation coupled to supersymmetric SU(5) 

breaking can cure the monopole problem. Independent of 

whether the SU(5) transition proceeds via strong coupling 

phenomena or tunnelling the monopole abundance 13 

SxpOnSntiSlly reduced if A5 > TH. For 10’ GeV < A5 < 10’ GeV 

the monopole abundance is low enough to pass the 
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cosmological density limits but probably not the neutron 

star limits. Other versions 3 Of supersymmetric SU(5) 

breaking in which the SU(5) transition takes place before 

primordial inflation offer the same types of solution. 
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